Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(16): eadj0268, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640247

RESUMO

Continuous monitoring of biomarkers at locations adjacent to targeted internal organs can provide actionable information about postoperative status beyond conventional diagnostic methods. As an example, changes in pH in the intra-abdominal space after gastric surgeries can serve as direct indicators of potentially life-threatening leakage events, in contrast to symptomatic reactions that may delay treatment. Here, we report a bioresorbable, wireless, passive sensor that addresses this clinical need, designed to locally monitor pH for early detection of gastric leakage. A pH-responsive hydrogel serves as a transducer that couples to a mechanically optimized inductor-capacitor circuit for wireless readout. This platform enables real-time monitoring of pH with fast response time (within 1 hour) over a clinically relevant period (up to 7 days) and timely detection of simulated gastric leaks in animal models. These concepts have broad potential applications for temporary sensing of relevant biomarkers during critical risk periods following diverse types of surgeries.


Assuntos
Implantes Absorvíveis , Transdutores , Animais , Tecnologia sem Fio , Concentração de Íons de Hidrogênio , Biomarcadores
2.
Adv Mater ; : e2309421, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38339983

RESUMO

Bioresorbable electronic devices as temporary biomedical implants represent an emerging class of technology relevant to a range of patient conditions currently addressed with technologies that require surgical explantation after a desired period of use. Obtaining reliable performance and favorable degradation behavior demands materials that can serve as biofluid barriers in encapsulating structures that avoid premature degradation of active electronic components. Here, this work presents a materials design that addresses this need, with properties in water impermeability, mechanical flexibility, and processability that are superior to alternatives. The approach uses multilayer assemblies of alternating films of polyanhydride and silicon oxynitride formed by spin-coating and plasma-enhanced chemical vapor deposition , respectively. Experimental and theoretical studies investigate the effects of material composition and multilayer structure on water barrier performance, water distribution, and degradation behavior. Demonstrations with inductor-capacitor circuits, wireless power transfer systems, and wireless optoelectronic devices illustrate the performance of this materials system as a bioresorbable encapsulating structure.

3.
Adv Mater ; 36(15): e2307782, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38303684

RESUMO

Bio/ecoresorbable electronic systems create unique opportunities in implantable medical devices that serve a need over a finite time period and then disappear naturally to eliminate the need for extraction surgeries. A critical challenge in the development of this type of technology is in materials that can serve as thin, stable barriers to surrounding ground water or biofluids, yet ultimately dissolve completely to benign end products. This paper describes a class of inorganic material (silicon oxynitride, SiON) that can be formed in thin films by plasma-enhanced chemical vapor deposition for this purpose. In vitro studies suggest that SiON and its dissolution products are biocompatible, indicating the potential for its use in implantable devices. A facile process to fabricate flexible, wafer-scale multilayer films bypasses limitations associated with the mechanical fragility of inorganic thin films. Systematic computational, analytical, and experimental studies highlight the essential materials aspects. Demonstrations in wireless light-emitting diodes both in vitro and in vivo illustrate the practical use of these materials strategies. The ability to select degradation rates and water permeability through fine tuning of chemical compositions and thicknesses provides the opportunity to obtain a range of functional lifetimes to meet different application requirements.


Assuntos
Implantes Absorvíveis , Eletrônica , Água/química
4.
Small ; : e2311531, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326095

RESUMO

The selective uphill and downhill movement of protons in and out of photosynthetic membrane enabled by ion pumps and ion channels is key to photosynthesis. Reproducing the functions of photosynthetic membranes in artificial systems has been a persistent goal. Here, a visible-light-harvesting nanofluidic channels is reported which experimentally demonstrates the ion translocation functions of photosynthetic membranes. A molecular junction consisting of photosensitive ruthenium complexes linked to TiO2 electron acceptors forms the reaction centers in the nanofluidic channels. The visible-light-triggered vectorial electron injection into TiO2 establishes a difference in transmembrane potential across the channels, which enables uphill transport of ions against a 5-fold concentration gradient. In addition, the asymmetric charge distribution across the channels enables the unidirectional downhill movement of ions, demonstrating an ion rectification effect with a ratio of 18:1. This work, for the first time, mimics both the uphill and downhill ion translocation functions of photosynthetic membranes, which lays a foundation for nanofluidic energy conversion.

5.
Int J Biol Macromol ; 258(Pt 2): 128958, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154707

RESUMO

The level of polysaccharides in the mature Lycium barbarum fruit (LBF) cell wall depends on their metabolism, trafficking, and reassembly within the cell. In this study, we examined the composition, content, and ultrastructure of the cell wall polysaccharides of LBF during maturation, and further analyzed cell wall polysaccharide remodeling using isotope tagging with relative and absolute quantification (iTRAQ)-based proteomics. The results showed that the contents of cellulose and hemicellulose tended to increase in the pre-maturation stage and decrease in the later stage, while pectin level increased before fruit maturing. The differential expression of the 54 proteins involved in the metabolic pathways for glucose, fructose, galactose, galacturonic acid and arabinose was found to be responsible for these alterations. The work provides a biological framework for the reorganization of polysaccharides in the LBF cell wall, and supports the hypothesis that pectic polysaccharide glycosyl donors come from starch, cellulose, hemicellulose and isomorphic pectin.


Assuntos
Lycium , Pectinas , Pectinas/análise , Lycium/química , Frutas/química , Polissacarídeos/química , Celulose/análise , Parede Celular
6.
J Proteomics ; 290: 105033, 2024 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-37879564

RESUMO

In order to better understand the mechanism of betaine accumulation in Lycium barbarum L. (LBL), we used iTRAQ (Isotope relative and absolute quantitative labeling) proteomics to screen and identify differentially abundant proteins (DAPs) at five stages (S1-young fruit stage, S2-green fruit stage, S3-early yellowing stage, S4-late yellowing stage, S5-ripening stage). A total of 1799 DAPs and 171 betaine-related DAPs were identified, and phosphatidylethanolamine N-methyltransferase (NMT), choline monooxygenase (CMO), and betaine aldehyde dehydrogenase (BADH) were found to be the key enzymes related to betaine metabolism. These proteins are mainly involved in carbohydrates, amino acids and their derivatives, fatty acids, carboxylic acids, photosynthesis and photoprotection, isoquinoline alkaloid biosynthesis, peroxisomes, and glycine, serine, and threonine metabolism. Three of the key enzymes were also up- and down-regulated to different degrees at the mRNA level. The study provide new insights into the of mechanism of betaine accumulation in LBL. SIGNIFICANCE: Betaine, a class of naturally occurring, water-soluble alkaloids, has been found to be widespread in animals, higher plants, and microbes. In addition to being an osmotic agent, betaine has biological functions such as hepatoprotection, neuroprotection, and antioxidant activity. Betaine metabolism (synthesis and catabolism) is complexly regulated by developmental and environmental signals throughout the life cycle of plant fruit maturation. As a betaine-accumulating plant, little has been reported about the regulatory mechanisms of betaine metabolism during the growth and development of Lycium barbarum L. (LBL) fruit. Therefore, this study used iTRAQ quantitative proteomics technology to investigate the abundance changes of betaine-related proteins in LBL fruit, screen and analyze the differential abundance proteins related to betaine metabolism, and provide theoretical references for the in-depth study of the mechanism of betaine metabolism in LBL fruit.


Assuntos
Betaína , Lycium , Animais , Betaína/metabolismo , Lycium/química , Lycium/metabolismo , Proteômica , Carboidratos , Ácidos Carboxílicos/metabolismo
7.
Chemosphere ; 350: 141029, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159735

RESUMO

Biochar (BC), with the benefits of enhancing soil fertility, absorbing heavy metals, carbon sequestration, and mitigating the greenhouse effect, has been extensively used for soil remediation. However, the long-term changes in the biotoxicity of BC under complex environmental conditions, which are the key factors influencing the sustainable application of BC in soil, are still unclear. Herein, the biotoxicity of BC aged with various processes, including dry‒wet cycle (DW) aging, freeze‒thaw cycle (FT) aging, ultraviolet irradiation (UV) aging, and low molecular weight organic acid (OA) aging, was systematically investigated by Escherichia coli (E. coli) culture experiments. The toxicity attenuation rate (%·week-1) was proposed to more concisely and clearly compare the influence of different aging methods on BC toxicity. The results indicated that after 5 weeks of aging, the toxicity attenuation rate during the four aging modes followed the order OA aging > FT aging > UV aging > DW aging. BC was nontoxic after 1 week of OA aging, 4 weeks of FT aging, 7 weeks of UV aging, and 14 weeks of DW aging. Spectroscopic characterizations revealed that humic acids in the dissolved organic matter of BC were the main reason for the biotoxicity. In addition, the attenuation of environmentally persistent free radicals on BC during aging was also an important factor for reducing environmental toxicity. This work provides insight into the detoxification mechanism of the BC aging process under ordinary environmental conditions and guidance for the safe application of BC in soil.


Assuntos
Escherichia coli , Poluentes do Solo , Carvão Vegetal/química , Solo/química , Substâncias Húmicas , Poluentes do Solo/toxicidade
8.
Mucosal Immunol ; 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38101774

RESUMO

Colorectal cancer (CRC) ranks among the top causes of mortality globally. Gut inflammation is one crucial risk factor that augments CRC development since patients suffering from inflammatory bowel disease have an increased incidence of CRC. The role of immunoglobulin (Ig)A in maintaining gut homeostasis and preventing inflammation has been well established. Our earlier work demonstrated that the marginal zone and B1 cell-specific protein (MZB1) promotes gut IgA secretion and its absence results in pronounced dextran sulfate sodium salt (DSS)-induced colitis. In the present study, we explored the role of MZB1 in CRC development using the azoxymethane (AOM)/DSS-induced CRC model. We observed an increase in both the number and size of the tumor nodules in Mzb1-/- mice compared with Mzb1+/+ mice. The increase in CRC development and progression in Mzb1-/- mice was associated with reduced intestinal IgA levels, altered gut flora, and more severe gut and systemic inflammation. Oral administration of the monoclonal IgA, W27, alleviated both the gut inflammation and AOM/DSS-induced CRC. Notably, cohousing Mzb1+/+ and Mzb1-/- mice from the 10th day after birth led to similar CRC development. Our findings underscore the pivotal role of MZB1-mediated IgA secretion in suppressing the onset and progression of CRC triggered by gut inflammation. Moreover, our study highlights the profound impact of microbiota composition, modulated by gut IgA levels, on gut inflammation. Nonetheless, establishing a direct correlation between the severity of colitis and subsequent CRC development and the presence or absence of a particular microbiota is challenging.

9.
Food Chem X ; 20: 101038, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38144814

RESUMO

The study aimed to assess differences in proteomic and metabolite profiles in ageing (1, 2, 4, and 6 days at 4 °C) beef exudates and determine their relationship with beef muscle iron metabolism and oxidation. Proteomic and metabolomic analyses identified 877 metabolites and 1957 proteins. The joint analysis identified 24 differential metabolites (DMs) and 56 differentially expressed proteins (DEPs) involved in 15 shared pathways. Ferroptosis was identified as the only iron metabolic pathway, and 4 DMs (l-glutamic acid, arachidonic acid, glutathione and gamma-glutamylcysteine) and 5 DEPs (ferritin, phospholipid hydroperoxide glutathione peroxidase, heme oxygenase 1, major prion protein, and acyl-CoA synthetase long chain family member 4) were involved in iron metabolism by regulating heme and ferritin degradation, Fe2+ and Fe3+ conversion, arachidonic acid oxidation and inactivation of glutathione peroxidase (GPX) 4, leading to increased levels of free iron, ROS, protein and lipid oxidation (P < 0.05). Overall, abnormal iron metabolism during ageing induced oxidative stress in muscle tissue.

10.
Nat Commun ; 14(1): 7299, 2023 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-37949871

RESUMO

Resorbable, implantable bioelectronic devices are emerging as powerful tools to reliably monitor critical physiological parameters in real time over extended periods. While degradable magnesium-based electronics have pioneered this effort, relatively short functional lifetimes have slowed clinical translation. Barrier films that are both flexible and resorbable over predictable timelines would enable tunability in device lifetime and expand the viability of these devices. Herein, we present a library of stereocontrolled succinate-based copolyesters which leverage copolymer composition and processing method to afford tunability over thermomechanical, crystalline, and barrier properties. One copolymer composition within this library has extended the functional lifetime of transient bioelectronic prototypes over existing systems by several weeks-representing a considerable step towards translational devices.


Assuntos
Eletrônica , Polímeros , Polímeros/química
11.
Chem Rev ; 123(19): 11722-11773, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37729090

RESUMO

Transient electronic systems represent an emerging class of technology that is defined by an ability to fully or partially dissolve, disintegrate, or otherwise disappear at controlled rates or triggered times through engineered chemical or physical processes after a required period of operation. This review highlights recent advances in materials chemistry that serve as the foundations for a subclass of transient electronics, bioresorbable electronics, that is characterized by an ability to resorb (or, equivalently, to absorb) in a biological environment. The primary use cases are in systems designed to insert into the human body, to provide sensing and/or therapeutic functions for timeframes aligned with natural biological processes. Mechanisms of bioresorption then harmlessly eliminate the devices, and their associated load on and risk to the patient, without the need of secondary removal surgeries. The core content focuses on the chemistry of the enabling electronic materials, spanning organic and inorganic compounds to hybrids and composites, along with their mechanisms of chemical reaction in biological environments. Following discussions highlight the use of these materials in bioresorbable electronic components, sensors, power supplies, and in integrated diagnostic and therapeutic systems formed using specialized methods for fabrication and assembly. A concluding section summarizes opportunities for future research.

12.
Front Immunol ; 14: 1155380, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37475856

RESUMO

Mutations in the recombination activating gene 1 (RAG1) and RAG2 in humans are associated with a broad spectrum of clinical phenotypes, from severe combined immunodeficiency to immune dysregulation. Partial (hypomorphic) RAG deficiency (pRD) in particular, frequently leads to hyperinflammation and autoimmunity, with several underlying intrinsic and extrinsic mechanisms causing a break in tolerance centrally and peripherally during T and B cell development. However, the relative contributions of these processes to immune dysregulation remain unclear. In this review, we specifically focus on the recently described tolerance break and B cell abnormalities, as well as consequent molecular and cellular mechanisms of autoantibody production in patients with pRD.


Assuntos
Proteínas de Homeodomínio , Imunodeficiência Combinada Severa , Humanos , Proteínas de Homeodomínio/genética , Imunodeficiência Combinada Severa/genética , Autoimunidade , Fenótipo , Autoanticorpos/genética
13.
Meat Sci ; 202: 109202, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37150068

RESUMO

Low molecular weight iron (LMW-Fe)-mediated oxidative stress from heme degradation may reduce beef water-holding capacity (WHC). However, the underlying mechanism of heme degradation is still unknown. In the present study, we assessed the WHC, tissue morphology, reactive oxygen species (ROS), apoptosis, heme oxygenase(HMOX) 1 expression, and ferroptosis characteristics of beef chilled at 4 °C for 6 days. Results showed that water loss increased and WHC decreased during beef storage (P < 0.05). Increased protein and mRNA expression of HMOX1 promoted the decomposition of heme and facilitated the liberation of iron ions (P < 0.05), and excess LMW-Fe was associated with ROS formation, depletion of glutathione, and inhibition of glutathione peroxidase 4 activity (P < 0.05). Muscle tissue showed typical features of ferroptosis, including expression of ferroptosis-related genes, malondialdehyde accumulation, and structural damage to mitochondria (P < 0.05). It was also found that HMOX1 and the heme pathway-mediated ferroptosis were associated with structural changes in myofibrils and reduced WHC in chilled beef.


Assuntos
Ferroptose , Heme Oxigenase-1 , Animais , Bovinos , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Espécies Reativas de Oxigênio , Refrigeração , Água , Estresse Oxidativo , Ferro , Heme/metabolismo
14.
Sci Adv ; 9(21): eadf2859, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37235651

RESUMO

Inspired by structural colors in avian species, various synthetic strategies have been developed to produce noniridescent, saturated colors using nanoparticle assemblies. Nanoparticle mixtures varying in particle chemistry and size have additional emergent properties that affect the color produced. For complex multicomponent systems, understanding the assembled structure and a robust optical modeling tool can empower scientists to identify structure-color relationships and fabricate designer materials with tailored color. Here, we demonstrate how we can reconstruct the assembled structure from small-angle scattering measurements using the computational reverse-engineering analysis for scattering experiments method and use the reconstructed structure in finite-difference time-domain calculations to predict color. We successfully, quantitatively predict experimentally observed color in mixtures containing strongly absorbing nanoparticles and demonstrate the influence of a single layer of segregated nanoparticles on color produced. The versatile computational approach that we present is useful for engineering synthetic materials with desired colors without laborious trial-and-error experiments.

15.
Chem Sci ; 14(15): 4183-4192, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37063797

RESUMO

Herein, we investigate synthetic routes to a close mimic of natural pheomelanin. Three different oxidative polymerization routes were attempted to generate synthetic pheomelanin, each giving rise to structurally dissimilar materials. Among them, the route employing 5-cysteinyl-dihydroxyphenylalanine (5-CD) as a monomer was verified as a close analogue of extracted pheomelanin from humans and birds. The resulting biomimetic and natural pheomelanins were compared via various techniques, including solid-state Nuclear Magnetic Resonance (ssNMR) and Electron Paramagnetic Resonance (EPR). This synthetic pheomelanin closely mimics the structure of natural pheomelanin as determined by parallel characterization of pheomelanin extracted from multiple biological sources. With a good synthetic biomimetic material in hand, we describe cation-π interactions as an important driving force for pheomelanogenesis, further advancing our fundamental understanding of this important biological pigment.

16.
Proc Natl Acad Sci U S A ; 120(11): e2217734120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36888661

RESUMO

Degradable polymer matrices and porous scaffolds provide powerful mechanisms for passive, sustained release of drugs relevant to the treatment of a broad range of diseases and conditions. Growing interest is in active control of pharmacokinetics tailored to the needs of the patient via programmable engineering platforms that include power sources, delivery mechanisms, communication hardware, and associated electronics, most typically in forms that require surgical extraction after a period of use. Here we report a light-controlled, self-powered technology that bypasses key disadvantages of these systems, in an overall design that is bioresorbable. Programmability relies on the use of an external light source to illuminate an implanted, wavelength-sensitive phototransistor to trigger a short circuit in an electrochemical cell structure that includes a metal gate valve as its anode. Consequent electrochemical corrosion eliminates the gate, thereby opening an underlying reservoir to release a dose of drugs by passive diffusion into surrounding tissue. A wavelength-division multiplexing strategy allows release to be programmed from any one or any arbitrary combination of a collection of reservoirs built into an integrated device. Studies of various bioresorbable electrode materials define the key considerations and guide optimized choices in designs. In vivo demonstrations of programmed release of lidocaine adjacent the sciatic nerves in rat models illustrate the functionality in the context of pain management, an essential aspect of patient care that could benefit from the results presented here.


Assuntos
Implantes Absorvíveis , Sistemas de Liberação de Medicamentos , Ratos , Animais , Eletrônica , Polímeros
17.
Mol Ther ; 31(4): 1177-1187, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36733251

RESUMO

CjCas9 is one of the smallest CRISPR-associated (Cas9) nucleases for mammalian genome editing. However, it requires a long N4RYAC (R = A or G; Y = C or T) protospacer-adjacent motif (PAM), limiting its DNA targeting scope. In this study, we investigated the PAMs of three CjCas9 orthologs, including Hsp1Cas9, Hsp2Cas9, and CcuCas9, by performing a GFP-activation assay. Interestingly, Hsp1Cas9 and CcuCas9 recognized unique N4RAA and N4CNA PAMs, respectively. We further generated an Hsp1Cas9-Hsp2Cas9 chimeric Cas9 (Hsp1-Hsp2Cas9), which recognized a simple N4CY PAM. Genome-wide off-target analysis revealed that Hsp1-Hsp2Cas9 has very few off-targets compared to SpCas9. By analyzing the crystal structure of CjCas9, we identified eight mutations that can improve the specificity and generate a high-fidelity Hsp1-Hsp2Cas9-Y. Hsp1-Hsp2Cas9-Y enables the knockout of B4GALNT2 and CMAH in porcine fetal fibroblasts (PFFs). Moreover, we developed a high-fidelity Hsp1-Hsp2Cas9-KY which displayed undetectable off-targets revealed by GUIDE-seq at four tested loci. These natural and engineered Cas9 nucleases enabled efficient genome editing in multiple mammalian cells, expanding the DNA targeting scope.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Suínos , Mutação , DNA/genética , Genoma , Mamíferos
18.
Food Chem ; 412: 135550, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-36706507

RESUMO

Ferroptosis plays a pivotal role in regulating various physiological processes and quality of post-mortem muscle. However, the molecular mechanisms underlying ferroptosis remain unclear. The study investigated how ferroptosis was induced in beef during cold storage. Results showed that the expression of autophagy-related genes, LC3, ATG5, ATG7, and NCOA4 in beef during cold storage promoted the degradation of ferritin heavy chains. Ferritin evoked ferroptosis by releasing free iron, inducing reactive oxygen species (ROS) accumulation and inhibiting the glutathione (GSH)-glutathione peroxidase 4 (GPX4) pathway. Furthermore, treatment of myoblasts with GSK 2656157 (autophagy inhibitor) showed that ferritin degradation was lower in the GSK 2656157-treated myoblasts than in the control, while GSH content and GPX4 activity were higher than the control (P < 0.05), and the contents of free iron, ROS and malondialdehyde, and apoptosis were lower than the control (P < 0.05). These results suggest that ferroptosis is induced by degradation of ferritin via the autophagic pathway.


Assuntos
Ferritinas , Ferroptose , Carne Vermelha , Animais , Bovinos , Autofagia , Ferritinas/genética , Ferritinas/metabolismo , Ferroptose/genética , Glutationa/metabolismo , Ferro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Carne Vermelha/análise
19.
J Orthop Res ; 41(1): 54-62, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35384025

RESUMO

Serial examination and direct measurement of intracompartmental pressure (ICP) are suboptimal strategies for the detection of acute compartment syndrome (CS) because they are operator-dependent and yield information that only indirectly reflects intracompartmental muscle perfusion. As a result, instances of unnecessary fasciotomy and unrecognized CS are relatively common. Recently, near-infrared spectroscopy (NIRS)-based systems for compartment monitoring have generated interest as an adjunct tool. Under ideal conditions, NIRS directly measures the oxygenation of intracompartmental muscle (StO2 ), thereby obviating the challenges of interpreting equivocal clinical examination or ICP data. Despite these potential advantages, existing NIRS sensors are plagued by technical difficulties that limit clinical utility. Most of these limitations relate to their transcutaneous design that makes them susceptible to both interference from intervening skin/subcutaneous tissue, underlying hematoma, and instability of the skin-sensor interface. Here, we present a flexible, wireless, Bluetooth-enabled, percutaneously introducible intramuscular NIRS device that directly and continuously measures the StO2 of intracompartmental muscle. Proof of concept for this device is demonstrated in a swine lower extremity balloon compression model of acute CS, wherein we simultaneously track muscle oxygenation, ICP, and compartment perfusion pressure (PP). The observed StO2 decreased with increasing ICP and decreasing PP and then recovered following pressure reduction. The mean change in StO2 as the PP was decreased from baseline to 30 mmHg was -7.6%. The mean difference between baseline and nadir StO2 was -17.4%. Cross-correlations (absolute value) describing the correspondence between StO2 and ICP were >0.73. This novel intramuscular NIRS device identifies decreased muscle perfusion in the setting of evolving CS.


Assuntos
Síndromes Compartimentais , Espectroscopia de Luz Próxima ao Infravermelho , Suínos , Animais , Músculos , Síndromes Compartimentais/diagnóstico
20.
Food Chem ; 398: 133903, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35998485

RESUMO

To investigate the potential mechanisms by which cold storage affects the water-holding capacity (WHC) of beef through analysis of exudates using an untargeted metabolomics strategy. A total of 877 metabolites were detected in four groups of beef exudates that have been frozen for 1, 2, 4, and 6 days, of which, 278 were identified as differential metabolites (DMs). The metabolic pathways of the DMs analysed by KEGG pathway enrichment included ABC transporters, purine metabolism, biosynthesis of cofactors, protein digestion and absorption, and ferroptosis. Ferroptosis was identified during storage of beef, and the reduction in WHC of beef was accompanied by a ferroptosis process. In addition, six DMs were identified in the KEGG pathway of ferroptosis, and the process of cellular ferroptosis was dependent on the inhibition of glutathione metabolic processes. Overall, the ferroptosis of cells during beef storage had a negative impact on WHC, and the finding of ferroptosis complemented the post-slaughter apoptosis.


Assuntos
Ferroptose , Água , Animais , Bovinos , Congelamento , Glutationa , Metabolômica , Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...